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Abstract

Introduction. Induced pluripotent stem cells (iPSCs) culturing allows modelling of neurodegenerative diseases in vitro and discovering its early biomarkers.

Our objective was to evaluate the activity of genes involved in mitochondrial dynamics and functions in genetic forms of Parkinson’s disease (PD) using cultures
of dopaminergic neurons derived from iPSCs.

Materials and methods. Dopaminergic neuron cultures were derived by reprogramming of the cells obtained from PD patients with SNCA and LRRK2 gene mu-
tations, as well as from a healthy donor for control. Expression levels of 112 genes regulating mitochondrial structure, dynamics, and functions were assessed by
multiplex gene expression profiling using NanoString nCounter custom mitochondrial gene expression panel.

Results. When comparing the characteristics of the neurons from patients with genetic forms of PD to those of the control, we observed variations in the gene
activity associated with the mitochondrial respiratory chain, the tricarboxylic acid cycle enzyme activities, biosynthesis of amino acids, oxidation of fatty acids,
steroid metabolism, calcium homeostasis, and free radical quenching. Several genes in the cell cultures with SNCA and LRRK2 gene mutations exhibited differen-
tial expression. Moreover, these genes regulate mitophagy, mitochondrial DNA synthesis, redox reactions, cellular detoxification, apoptosis, as well as metabolism
of proteins and nucleotides.

Conclusions. The changes in gene network expression found in this pilot study confirm the role of disrupted mitochondrial homeostasis in the molecular patho-
genesis of PD. These findings may contribute to the development of biomarkers and to the search for new therapeutic targets for the treatment of SNCA- and
LRRK2-associated forms of the disease.
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OneHKa aKTHBHOCTH MUTOXOHIPHAJIbHBIX T€HOB
B KYJbTypax J0(paMUHEPIrH4eCKUX HEHPOHOB,
MOJYYE€HHbIX U3 UHAYIMPOBAHHBIX ITIOPUIOTEHTHBIX
CTBOJIOBBIX KJIETOK OT NAIMEHTOB ¢ 00/1e3Hb10 I1apkuHCcoHa

A.C. Beruunosa, M.P. Kankaesa, H.M. Mymxupu, C.H. Wanapuomkun
OI'BHY «Hayunwiii yenmp Hegpoaoeuu», Mockea, Poccus

AHHoOTAIHS

Beedenue. Texronoeuu Kyabmueuposaus uHOyUUpoBAHHbIX NAPUROMeHMHbIX cmeoaosbix Kaemok (MIICK) npedocmasasiom 603modcHocmy 045 Modenuposa-
HUsl HeilpoOeceHepamugHbIX 3a004e6aHUil in Vitro u ROUCKA UX PAHHUX OUOMADKEPOB.

Heav uccredosars — overump akmusHOCHb 2HOB, BOGACHEHHIX 8 (DYHKYUOHUPOBAHUE MUMOXOHOPUIL, HA KYAbMYpax 0ogamuHepeuueckux HelipoHo8 — npous-
600nbix UTICK — npu eenemuneckux gropmax 6onesnu Hapxuncona (BII).
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Mamepua.vt u memodst. Kynvmypsi doamunepeuteckux Heiiporos 0biau noyersl Hymem KAemouH020 penpoepammuposarus om nayuenmos ¢ b, aeasrouuxcs
Hocumenamu mymauuii 6 eenax SNCA u LRRK2, a makxce om 300pogoeo doHopa (konmpoas). C nomouipio mexHoaoeuy MyabmunaekcHozo npopuauposanus
2eHHotl akcnpeccuu Ha naamgopme «NanoString» ouenusanu dxkcnpeccuto 112 2eHos, yHacmeyiouux 8 CmpyKmypHo-@yHKYUOHAABHOL OPeaHU3AYUY MUMOXOHOPUIL
U COOPAHHBIX 6 CHEYUANBHYIO «<MUMOXOHOPUANBHYIO» NAHED.

Pesysomamut. [lpu cpasrenuy Xapaxmepucmuk HeilporHos, NOAYHeHHbIX 0m nauuenmos ¢ eeremuyeckumu gopmamu BIT u 6 konmpone, viagneHb: pazauuus
8 AKMUGHOCTY 2eH08, NPOOYKIMbI KOMOPbIX C893aHbL ¢ PABGOMOL MUMOXOHOPUAABHO0 ObIXAMEAbHO20 KOMNAEKCA, (DepMeHMAaMy YUKAG MPUKAPGOHOBBIX KUCAOM,
GUOCUHMe30M AMUHOKUCAOM, OKUCACHUEM JCUPHBIX KUCAOM, MEMABOAUZMOM CHEPOUA08, 20Me0Cma3oM KaAblyus 8 Kaemie, ymuausayueii cé0000HbIX paouKanos.
Pad eenoe nokazan maxace dugpeperuuposarnyro sxcnpeccuio 8 Kyavmypax ¢ mymayusmu SNCA u LRRK2; 6 donoanerue k ykazanubim vite QyHKyusm 0an-
Hble 2eHbl KOHMpOAUpyom Mumogacuto, curimes mumoxondpuansroli THK, oxucaumenvtvie peakuuu, npoyeccol 0emokcukayuy Kaemiu u anonmo3, Memaboausm
0eAK08 U HYKAeOMUO08.

Sax.arouenue. BoisieaenHvle 6 HACMOSUEM HUAOMHOM UCCACO08AHUL U3MEHEHUS SKCHPECCUl 2eHHBIX Cemetl OOMeepIcOatom poab HapyUleHUi MUMOXOHOPUANbHOZO
20Meocmasa 6 moaekyaspHom namoeenese BII u mozym cnocobcmeosams pazpadomke OUOMAPKepos U NOUCKY Hosbix mepanesmuyeckux muuiereii npu SNCA-
u LRRK2-accoyuuposantvix gopmax 3ab0nesanus.
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Introduction

Parkinson's disease (PD) is a common age-relat-
ed neurodegenerative disorder that primarily af-
fects the dopaminergic neurons in the substantia
nigra pars compacta (SNpc), resulting in a complex
combination of motor and non-motor symptoms.
By 2040, the number of people with PD is expect-
ed to reach 12.9 million [1]. All current PD treat-
ments are symptomatic and do not stop the disease
from progressing. The first motor symptoms occur
when the dopaminergic neurons in the SNpc have
already degenerated by about 60 %, which is why
therapy is initiated too late [2]. Current technolo-
gies allow to culture induced pluripotent stem cells
(iPSCs) obtained from the PD patients, thus provid-
ing new opportunities to study the pathogenesis of
neurodegenerative disorders. The in vitrro PD models
andneuronsderivedfromtheiPSCsof PD patientswith
mutations in PD-causing genes appeared to be highly
informative for identifying molecular drivers of the
neurodegenerative process [3]. It is important to
mention that iPSC-based models would help to iden-
tify the earliest morphological and functional chang-
es in neurons and to detect the developing disease at
its earliest presymptomatic stages.

Rapid advances in molecular technologies allowing
efficient and powerful qualitative and quantitative

assessment of various genetic characteristics have
brought the studies in the field of disease progres-
sion markers to a new level. These include the Nano-
String nCounter technology developed by NanoString
Technologies, which enables targeted multiplex anal-
ysis of hundreds of genes in a single run [4, 5]. The
advantages of this technology over traditional gene
expression analysis are walk-away automation of the
workflow, robust performance, and reproducibility of
the results. The sensitivity of the method is compara-
ble to the one of a real-time PCR [6]. The method is
based on molecular barcoding, in which the studied
targets are tagged with target-specific color-coded
probe pairs that enable further detection of the cap-
tured targets [7]. As the preliminary steps of reverse
transcription and amplification often leading to bi-
ased data are excluded from the workflow [8], this
method demonstrates high level of accuracy and sen-
sitivity with low concentrations and small volumes of
the source material [4, 5].

Current studies of the mechanisms involved in the de-
velopment of PD focus primarily on mitochondrial
dynamics [9, 10]. In our research we used bar-coding
multiplex gene expression profiling on the NanoString
platform to assess the activity of genes involved in mi-
tochondrial dynamics in the cultures of dopaminergic
neurons derived from iPSCs of the patients with genetic
forms of PD.
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Materials and methods

Cell line culturing

Skin biopsy specimen were obtained from two pa-
tients with known genetic forms of PD and one healthy
donor. One of the PD patients had a heterozygous du-
plication of exons 2—7 of the SNCA gene and the se-
cond had the heterozygous G2019S point mutation in
the LRRK2 gene. All patients were familiarized with the
conditions of the study and signed an informed consent
form. The study was approved by the local ethics com-
mittee of the Research Center of Neurology (protocol
No. 11/12 dated 12 September 2012).

The cells from the primary homogeneous dermal fibro-
blast culture were reprogrammed into iPSCs. To repro-
gram the fibroblasts, we used Sendai virus because its
reprogramming factors and DNA do not integrate into
the genome of the cells studied. All the iPSC lines were
cultured in the mTeSR medium (STEMCELL Tech-
nologies) on Matrigel-coated substrates. Fibroblast
reprogramming and iPSC differentiation into neural
progenitor cells and further into neuronal cell cultures
enriched by dopaminergic neurons were performed as
previously described [11].

RNA isolation from the neuronal cell culture

Total RNA from the mature neuronal lines of the PD
patients and the healthy donor was isolated using To-
tal RNA purification kit (Norgen) according to the
manufacturer's instructions. The RNA quantification
was made using a Nanodrop 2000 spectrophotometer
(ThermoScientific). The RNA isolate was used imme-
diately or stored at —80°C until used in the experiments.

Gene expression analysis

Gene expression was analyzed using NanoString tech-
nology (NanoString Technologies). The analysis used
the custom gene expression panel containing 12 gene
networks associated with dynamics and functions of
mitochondria. The panel includes 112 genes, which
were selected based on existing scientific data on their
involvement in the regulation of mitochondrial struc-
ture and dynamics. The panel also includes 5 house-
keeping genes as the controls. After hybridization of
total RNA (100 ng) with the target-specific fluorescent
tags, the samples were loaded into the prep station of the
nCounter Analysis System (NanoString Technologies)
for further digital analysis according to the manufactur-
er's protocols.

The data obtained were analyzed using nSolver v. 4.0
software. Source data were normalized using the house-
keeping control genes included in the panel: f-actin
(NM_001101.2), GAPDH (NM_002046.3), HPRT1
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(NM_000194.1), RPL19 (NM_000981.3), and B-tu-
bulin (NM_178014.2). The data obtained with the
nCounter system are expressed in the units reflecting
concentration of target RNA molecules in the sample.

Results

For the iPSCs obtained from the PD patients and the
healthy donor all necessary tests required by interna-
tional standards were performed, namely the assessment
of pluripotency marker expression, pluripotent cell gene
expression, and karyotyping to confirm the normal
karyotype of the cells and their ability to form embryoid
bodies and derivatives of the three germ layers. The dif-
ferentiation of the iPSCs from the PD patients and the
healthy donor into neuronal progenitor cells was initiat-
ed simultaneously. The selection of iPSC lines was based
on the results of the tests performed. The iPSC lines that
showed a tendency towards preferential formation of
neural derivatives in the spontaneous in vitro differen-
tiation assay, were used first. Terminal differentiation
into dopaminergic neurons was performed in two steps
according to the previously used protocol [12].

Further, changes in mitochondrial gene expression pro-
files in three neuronal cell cultures derived from iPSCs
were analyzed using the NanoString platform. We as-
sessed expression levels of 112 genes from the custom
NanoString Human mitochondrial panel. Comparative
analysis revealed unidirectional changes (decreases)
in the expression levels of 13 genes in the cell cultures
from both patients with genetic forms of PD compared
with those in the control neuron cell culture (see the
Figure). In the known genetic forms of PD, a decrease
in expression appeared to be typical for the genes asso-
ciated with oxidative phosphorylation, the tricarboxy-
lic acid cycle, amino acid biosynthesis, fatty acid oxi-
dation, steroid metabolism, calcium homeostasis, and
free radical quenching [13—15].
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Table 1. Gene expression changes in the neurons with the LRRK?2 gene mutation

Metabolic pathway

Mitochondrial respiratory chain

Transmembrane transport of substrates

Tricarboxylic acid cycle

Metabolism of the proteins, nucleotides, and vitamins

Heat shock proteins

Mitophagy

Protein translation

Gene
SDHA

CYCS, ATP5E, ATPAF2, NDUFA1, NDUFBS,
NDUFS4

SLC25A12, SLC25A13, SLC25A
FXN, TMLHE

FH

AMT, PCCA, TMLH
GATM, GCDH, PCCB, HADHA

HSPATA, HSPA4L, HSPA6, HSPB1

PINK1

TSFM

Table 2. Gene expression changes in the neurons with the SNCA gene mutation

Metabolic pathway

COX15, COX6B1, CYP11B2, CYP27A1, ETFA, MT-ATP6, MT-
ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2,
. . . . MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, NDUFA10.
Mitochondrial respiratory chain NDUFA11, NDUFB3, NDUFS2, NDUFS3, NDUFS6, NDUFV1, SDHB,

Transmembrane transport
of substrates

Tricarboxylic acid cycle

Mitophagy

Amino acid metabolism

Heat shock proteins

Replication and repair
of mitochondrial DNA

Protein translation

Gem synthesis

Gene

SDHC, SDHD
UQCRB, COX10

ABCB6, CPT1A, SLC25A20, SLC25A4, TIMM44
SLC25A15, SLC25A22, SLCIA6

SUCLA2, PDHB, PDHX

GSR
HIF-10, Mfn2, OPA1
HADHB

ALDH18A1, NDUFV2, SARDH

HSPA9
HSPA14

DGUOK, POLG, C100rf2

TUFM, MRPL3

PPOX
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Gene expression level
Increased

Decreased

Increased

Increased

Increased
Decreased

Decreased

Decreased

Decreased

Gene expression level

Increased

Decreased
Increased

Decreased
Increased

Increased
Decreased
Increased
Decreased
Increased
Decreased

Decreased

Decreased

Decreased
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Decreased expression of some genes associated with
mitochondrial dynamics and functions in neurons de-
rived from patients with genetic form of PD.

Several genes showed a differential expression in the
neurons cultured from the PD patient cells with mu-
tations in the LRRK2 and SNCA genes. In the neurons
with the LRRK2 gene mutation 10 genes showed an in-
crease in expression and 16 genes showed a decrease in
expression compared to the control neuron cell culture
and the culture of neurons with the SNCA gene mutation
(Table 1). The products of these differentially expressed
genes are involved in the mitochondrial respiratory
chain, the tricarboxylic acid cycle, mitophagy, protein
processing and metabolism of the proteins, nucleotides
and vitamins in a cell, transmembrane transport of iron
and other substrates [16, 17].

In the neurons derived from the cells with the SNCA
gene mutation 44 genes showed increased expression
levels and 21 genes showed decreased expression levels
compared to the control and to the neurons with the
LRRK?2 gene mutation (Table 2). Increased expression
was observed in genes involved in oxidative phosphory-
lation, mitophagy, replication and repair of mitochon-
drial DNA, the tricarboxylic acid cycle, protein pro-
cessing, lipid and protein metabolism, redox control,
apoptosis, and protection against neurotoxicity. The
detected genes with decreased expression are mainly
involved into protein sorting and accumulation, and
protein and nucleotide metabolism [18—23].
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