The value of various brain pathways impairment in the post-stroke rehabilitation of walking function

Cover Page


Cite item

Full Text

Abstract

Corticospinal tract (CST) is the major brain pathway yielding motor activity; however, functional role of the CST and other pathways in the implementation of such a socially important function as walking in patients with stroke is not completely clear. Following the CST lesion the process of recovery involves not only CST on both sides but also other pathways, including the extrapyramidal tracts: corticoreticular (CRP) and corticorubrospinal (CRSP) pathways. With the help of modern neurovisualization methods we showed that Wallerian degeneration of the CST is not the only predictor of poor recovery of motor function after stroke, whereas a compensatory increase in fiber volume of CRP on the opposite side may improve recovery of affected leg. Further studies of the functional significance of brain pathways including the CRP and CRSP in the recovery of post-stroke walking function will clarify th mechanisms of neuroplasticity and predictors of recovery to optimize the personalized approach to rehabilitation.

About the authors

Albert S. Kadykov

Research Center of Neurology

Email: yuri-mozg110889@yandex.ru
ORCID iD: 0000-0001-7491-7215

D. Sci. (Med.), Professor, senior researcher, 3rd Neurological department

Russian Federation, Moscow

Yury D. Barkhatov

Research Center of Neurology

Author for correspondence.
Email: yuri-mozg110889@yandex.ru
Russian Federation, Moscow

References

  1. Антонен Е.Г. Проводящие пути спинного мозга (анатомо-физиологические и неврологические аспекты): учебное пособие. Петрозаводск: Изд-во ПетрГУ, 2001.
  2. Баркер Р., Барази С., Нил М. Наглядная неврология: Учебное пособие. Под редакцией Скворцовой В.И. М.: ГЭОТАР-Медиа, 2006.
  3. Бушенева С.Н., Кадыков А.С., Черникова Л.А. Влияние восстановительной терапии на фунциональную организацию двигательных систем после инсульта. Анн. клин. и эксперим. неврол. 2007; 2 (1): 4–8.
  4. Данилова H.H. Физиология высшей нервной деятельности. Ростов-на-Дону: «Феникс», 2005.
  5. Добрынина Л.А., Коновалов Р.Н., Кремнева Е.И., Кадыков А.С. МРТ в оценке двигательного восстановления больных с хроническими супратенториальными инфарктами. Анн. клин. и эксперим. неврол. 2012; 2 (6): 4–10.
  6. Добрынина Л.А. Возможности функциональной и структурной нейровизуализации в изучении восстановления двигательных функций после ишемического инсульта. Анн. клин. и эксперим.неврол. 2011; 3 (5): 53–61.
  7. Кадыков А.С., Черникова Л.А., Шахпаронова Н.В. Реабилитация неврологических больных. М: МЕДпресс-информ, 2008.
  8. Кадыков А.С. Реабилитация после инсульта. М: Миклош, 2005.
  9. Костенко Е.В., Петрова Л.В., Лебедева А.В., Бойко А.Н. Комплексная реабилитация пациентов с постинсультной спастичностью в амбулаторно-поликлинических условиях. Нервные болезни 2013; 3: 30–38.
  10. Суслина З.А., Варакин Ю.Я., Верещагин Н.В. Сосудистые заболевания головного мозга: Эпидемиология. Основы профилактики. М: МЕДпресс-информ, 2006.
  11. Суслина З.А., Иллариошкин С.Н., Пирадов М.А. Неврология и нейронауки – прогноз развития. Анн. клин. и эксперим. неврол. 2007; 1 (1): 5–9.
  12. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000.
  13. Bestmann S., Swayne O., Blankenburg F. et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J. Neurosci. 2010; 30: 11926–11937.
  14. Cho H.M., Choi B.Y., Chang C.H. et al. The clinical characteristics of motor function in chronic hemiparetic stroke patients with complete corticospinal tract injury. NeuroRehabilitation 2012; 31: 207–213.
  15. Do K.H., Yeo S.S., Lee J., Jang S.H. Injury of the corticoreticular pathway in patients with proximal weakness following cerebral infarct: diffusion tensor tractography study. Neurosci Lett. 2013; 546: 21–215.
  16. Jang S.H., Chang C.H., Lee J. et al. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke 2013; 44: 1099–1104.
  17. Jang S.H. The role of the corticospinal tract in motor recovery in patients with a stroke: A review. NeuroRehabilitation. 2009; 24(3): 285–290.
  18. Jayaram G., Stagg C.J., Esser P. et al. Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin. Neurophysiol. 2012; 123: 2422–2428.
  19. Kim E.H., Lee J., Jang S.H. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. NeuroRehabilitation 2013; 32: 583–590.
  20. Kuhn M.J., Johnson K.A., Davis K.R. et al. Wallerian degeneration: evaluation with MR imaging. Radiology 1988; 168: 199–202.
  21. Lindenberg R., Zhu L.L., Rüber T., Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 2012; 33: 1040–1051.
  22. Miyai I., Suzuki T., Kang J. et al. Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke 1999;30: 1380–1383.
  23. Orita T., Tsurutani T., Izumihara A., Kajiwara K. Early, evolving Wallerian degeneration of the pyramidal tract in cerebrovascular diseases: MR study. J. Comput. Assist. Tomogr. 1994; 18: 943–946.
  24. Pierpaoli C., Jezzard P., Basser P.J. et al. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201: 637–648.
  25. Puig J., Blasco G., Daunis-I.-Estadella J. et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 2013; 44: 2016–2018.
  26. Puig J., Blasco G., Daunis-I.-Estadella J. et al. Increased corticospinal tract fractional anisotropy can discriminate stroke onset within the first 4.5 hours. Stroke 2013; 44: 1162–1165.
  27. Ruber T., Schlaug G., Lindenberg R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke. Neurology 2012;79: 515–522.
  28. Schaechter J.D., Fricker Z.P., Perdue K.L. et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009; 30: 3461–3474.
  29. Schulz R., Park C.H., Boudrias M.H. et al. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke 2012; 43: 2248–2251.
  30. Song F., Zhang F., Yin D.Z. et al. Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients. J. Int. Med. Res. 2012; 40: 126–133.
  31. Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov. Disord. 2013; 28: 1483–1491.
  32. Thomalla G., Glauche V., Koch M.A. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 2004; 22: 1767.
  33. Werring D.J., Toosy A.T., Clark C.A. et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke J. Neurol. Neurosurg. Psychiatry 2000; 69: 269–272.
  34. Yin D., Yan X., Fan M. et al. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function. AJNR Am. J. Neuroradiol. 2013; 34: 1341–1347.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Kadykov A.S., Barkhatov Y.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies