Mechanisms of therapeutic hypothermia effect on brain damage in hypoxia and ischemia

Cover Page

Cite item

Full Text


Ischemia and hypoxia are major factors of brain damage. Cerebral injury takes time to develop, with acute, subacute, and chronic phases specified. Reparative processes run simultaneously with damage cascades. Every phase of cerebral injury is characterized with specific pathophysiological cascades. Induced hypothermia has been implemented in neurocritical care for several decades, and its efficacy has been proved in patients after cardiac arrest and in newborns with perinatal hypoxic-ischemic encephalopathy. However, in other neurocritical care settings the efficacy of has not been demonstrated yet. On the other hand, the results of experimental studies and discovered mechanisms of hypothermia effects on pathophysiological cascades of cerebral injury and repair give hope for the hypothermia to become a valuable option for the neurocritical care. In the presented review hypothermia effects on numerous pathophysiological cascades of cerebral injury due to hypoxia and ischemia are described.


About the authors

K. A. Popugaev

N.N. Burdenko Neurosurgical Research Institute

Russian Federation, Moscow

A. A. Hutorenko

Lomonosov Moscow State University

Author for correspondence.
Russian Federation, Moscow


  1. Верещагин Н.В., Пирадов М.А. Принципы ведения и лечения больных в острейший период инсульта. Вестник интенсивной терапии. 1997; 1–2: 35.
  2. Пирадов М.А. Нейрореаниматология инсульта. Вестник Российской Академии Медицинских Наук. 2003; 12: 68–70.
  3. Alberts B., Johnson A., Lewis J. et al. Molecular Biology of the Cell,Garland Science, 4th edition, 2002.
  4. Antonsson B., Montessuit S., Sanchez B., Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001; 276: 11615–11623.
  5. Aoki K., Uchihara T., Tsuchia K. et al. Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol. 2003; 106:121–124.
  6. Ashkenazi A., Dixit V.M. Death receptors: signaling and modulation. Science. 1998; 281: 1305–1308.
  7. Baumann E., Preston E., Slinn J., Stanimirovic D. Postischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and blood-brain barrier disruption after global cerebral ischemia. Brain Res. 2009; 1269: 185–197.
  8. Bennet L., Roelfsema V., George S. et al. The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep. J Physiol. 2007; 578: 491–506.
  9. Boris-Moller F., Kamme F., Wieloch T. The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia in the rat. Brain Res Mol Brain Res. 1999;63: 163–173.
  10. Bright R., Raval AP., Dembner JM. et al. Protein kinase C delta mediates cerebral reperfusion injury in vivo. J Neurosci 2004; 24: 6880–6888.
  11. Busl K.M., Greer DM. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation. 2010; 26: 5–13.
  12. Ceulemans A., Zgavc T., Kooijman R. et al. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 2010; 7: 74.
  13. Charriaut-Marlangue C., Margaill I., Represa A. et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996; 16: 186–194.
  14. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001; 21: 214.
  15. Choi DW. Excitotoxic cell death. J Neurobiol. 1992; 23: 1261–1276.
  16. Choi J.S., Park J., Suk K. et al. Mild hypothermia attenuates intercellular adhesion molecule-1 induction via activation of extracellular signal-regulated kinase-1/2 in a focal cerebral ischemia model. Stroke Res Treat. 2011; 201: 9.
  17. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990; 181: 195–213.
  18. Colbourne F., Grooms S.Y., Zukin R.S. et al. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci USA. 2003; 100: 2906–2910.
  19. Collins V.E., Macleod M.R., Donnan G.A. et al. 1,026 Experimental treatments in acute stroke. Ann Neurol. 2006; 59: 467–477.
  20. D’Cruz B.J., Fertig K.C., Filano A.J. et al. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab. 2002; 22: 843–851.
  21. del Zoppo G.J., Milner R. Integrin–matrix interactions in the cerebro-microvasculature. Arterioscler Thromb Vasc Biol. 2006; 26: 1966–1975.
  22. Deng H., Han H.S., Cheng D. et al. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke. 2003; 34: 2495–2501.
  23. Dietrich W.D., Busto R., Halley M., Valdes I. The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol. 1990; 49: 486–497.
  24. Du C., Fang M., Li Y. et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000; 102: 33–42.
  25. Duz B., Oztas E., Erginay T. et al. The effect of moderate hypothermia in acute ischemic stroke on pericyte migration: an ultrastructural study. Cryobiology. 2007; 55: 279–284.
  26. Ferri K.F., Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001; 3: E255–63.
  27. Font M.A., Arboix A., Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2010; 6: 238–244.
  28. Gasche Y., Copin J.C., Sugawara T. et al. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001; 21: 1393–1400.
  29. Ginsberg M.D., Sternau L.L., Globus M.Y. et al. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev. 1992; 4: 189–225.
  30. Girouard H., Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke and Alzheimer disease. J Appl Physiol. 2006; 100: 328–335.
  31. Globus M.Y-T., Busto R., Lin B. et al. Detection of free radical activity during transient global ischemia amd recirculation. J Neurochem. 1995; 65: 1250–1256.
  32. Goldstein J.C., Munoz-Pinedo C., Ricci J.E. et al. Cytochrome c is released in a single step during apoptosis. Cell Death Differ. 2005; 12: 453–462.
  33. Guo S., Lo E.H. Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke. 2009; 40: S4–S7.
  34. Guo S., Kim W.J., Lok J. et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA. 2008; 105: 7582–7587.
  35. Gurer G., Gursoy-Ozdemir Y., Erdemli E. et al. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol. 2009; 19: 630–641.
  36. Hamann G.F., Burggraf D., Martens H.K. et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke. 2004; 35: 764–769.
  37. Hamel E. Perivascular nerves and the regulation of the vascular tone. J Appl Physiol. 2006; 100: 1059–1064.
  38. Han H.S., Karabiyikoglu M., Kelly S. et al. Mild hypothermia inhibits nuclear factor-kappa B translocation in experimental stroke. J Cereb Blood Flow Metab. 2003; 23: 589–598.
  39. Han H.S., Qiao Y., Giffard R.G. et al. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. Neuroscience. 2002; 22: 3921–3928.
  40. Hawthorne A.L., Hu H., Kundu B. et al. The unusual response of serotogenic neurons after CNS injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci. 2011; 31: 5605–5616.
  41. Huh P.W., Belayev L., Zhao W. et al. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg. 2000; 92: 91–99.
  42. Iadecola C., Needergaard M. Glia regulation of the cerebral microvasculature. Nat Neurosci. 2007; 10: 1369–1376.
  43. Imada S., Yamamoto M., Tanaka K. et al. Hypothermia-induced increase of oligodendrocytes precursor cells: Possible involvement of plasmalemmal voltage-dependent anion channel 1. Neurosci Res. 2010; 88: 3457–3466.
  44. Jinno S. Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J Comp Neurol. 2011; 519: 451–466.
  45. Kao C.H., Chio C.C., Lin M.T., Yeh C.H. Body cooling ameliorating spinal cord injury may be neurogenesis-, anti-inflammation- and angiogenesis-associated in rats. J Trauma. 2011; 70: 885–893.
  46. Karnatovskaia L.V., Wartenberg K.E., Freeman W.D. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. The Neurohospitalist. 2014; 4: 153–163.
  47. Kawanishi M., Kawai N., Nakamura T. et al. Effect of delayed mild brain hypothermia on edema formation after intracerebral hemorrhage in rats. J Stroke Cerebrovasc Dis. 2008; 17: 187–195.
  48. Kidwell C.S., Liebeskind D.S., Starkman S., Saver J.L. Trends in acute ischemic stroke trials through the 20th century. Stroke. 2001; 32: 1349–1359.
  49. Kischkel F.C., Hellbardt S., Behrmann I., et al. Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995; 14: 5579– 5588.
  50. Kitanaka C., Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 1999; 6: 508 –515.
  51. Koehler R.C., Gebremedhin D., Harder D.R. Role of astrocytes in cerebrovascular regulation. J Appl Physiol. 2006; 100: 307–317.
  52. Kofke A.W. Incrementally Applied Multifaceted Therapeutic Bundles in Neuroprotection Clinical Trials…Time for Change. Neurocrit Care. 2010; 12: 438–444.
  53. Kouchoukos N.T., Masetti P., Rokkas C.K. et al. Safety and efficacy of hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2001 ;72: 699–707; discussion 707–708.
  54. Kuo J.R., Lo C.J., Chang C.P. et al. Brain cooling-stimulated angiogenesis and neurogenesis attenuated traumatic brain injury in rats. J Trauma. 2010; 69: 1467-1472.
  55. Krammer P.H. CD95’s deadly mission in the immune system. Nature. 2000; 407: 789–795.
  56. Lasarzik I., Winkelheide U., Thal S.C. et al. Mild hypothermia has no long-term impact on postischemic neurogenesis in rats. Anesth Analg. 2009; 109: 1632–1639.
  57. Lee J.E., Yoon Y.J., Moosley M.E., Yenari M.A. Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke. J Neurosurg. 2005; 103: 289–297.
  58. Lee K.M., Jang J.H., Park J.S. et al. Effect of mild hypothermia on blood brain barrier disruption induced by oleic acid in rats. Genes and Genomics. 2009; 32: 89–98.
  59. Lee S.M., Zhao H., Maier C.M., Steinberg G.K. The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. J Cereb Blood Flow Metab. 2009; 29: 1589–1600.
  60. Li L., Harms K.M., Ventura P.B. et al. Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia. 2010; 58: 1610–1619.
  61. Li P., Nijhawan D., Budihardjo I. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997; 91: 479–489.
  62. Li Y., Sharov V.G., Jiang N. et al. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol. 1995; 146: 1045–1051.
  63. Liu L., Yenari M.A. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci 2007; 12: 816–825.
  64. Liu L., Kim J.Y., Koike M.A. et al. FasL shedding is reduced by hypothermia in experimental stroke. J Neurochem. 2008; 106: 541–550.
  65. Li Y., Chopp M., Jiang N. et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke. 1995;26: 1252–7. Discussion 7–8.
  66. Li Y., Powers C., Jiang N., Chopp M. Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci. 1998; 156: 119–32.
  67. MacLellan C.L., Davies L.M., Fingas M.S., Colbourne F. The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke. 2006; 37: 1266–1270.
  68. Makarova J.A., Maltseva D.V., Galatenko V.V. et al. Exercise immunology meets MiRNAs. Exerc Immunol Rev. 2014; 20: 135–164.
  69. Manley G.T., Fujimura M., Ma T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000; 6: 159–163.
  70. Matsui T., Kakeda T. IL-10 production is reduced by hypothermia but augmented by hypothermia in rat microglia. J Neurotrauma. 2008; 25: 709–715.
  71. Meybohm P., Gruenewald M., Zacharowski K.D. et al. Mild hypothermia alone or in combination with anesthetic post-conditioning reduces expression of inflammatory cytokines in the cerebral cortex of pigs after cardiopulmonary resuscitation. Crit Care. 2010; 14: R21.
  72. Nagel S., Su Y., Horstmann S. et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain research. 2008; 1188: 198–206.
  73. Navarro-Sobrino M., Rosell A., Hernandez-Guillamon M. et al. A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis. 2011; 216:205–211.
  74. Nicotera P., Leist M., Manzo L. Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci. 1999; 20: 46–51.
  75. Oda Y., Gao G., Wei EP., Povlishock J.T. Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab. 2011; 31: 1143–1154.
  76. Panickar K.S., Norenberg M.D. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia. 2005; 50: 287–98.
  77. Perrone S., Szabo M., Bellieni C.V. et al. Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury. Pediatr Neurol. 2010; 43: 236–240.
  78. Peter M.E., Krammer P.H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003; 10: 26–35.
  79. Preston E., Webster J. A two-hour window for hypothermic modulation of early events that impact delayed opening of the rat blood-brain barrier after ischemia. Acta Neuropathol. 2004; 108: 406–412.
  80. Raval A.P., Dave K.R., Prado R. et al. Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation. J Cereb Blood Flow Metab. 2005; 25: 730–741.
  81. Schmidt K.M., Repine M.J., Hicks S.D. et al. Regional changes in glial cell line-derived neurotrophic factor after cardiac arrest and hypothermia in rats. Neurosci Lett. 2004; 368: 135–139.
  82. Schmitt K.R., Diestel A., Lehnardt S. et al. Hypothermia suppresses inflammation via ERK signaling pathway in stimulated microglial cells. J Neuroimmunol. 2007; 189: 7–16.
  83. Shimohata T., Zhao H., Steinberg G.K. Epsilon PKC may contribute to the protective effect of hypothermia in rat cerebral ischemia model. Stroke 2007; 38: 375–380.
  84. Shuster A., Melamed E., Offen D. Neurogenesis in the aged and neurodegenerative brain. Apoptosis. 2010; 15: 1415–1421.
  85. Slikker W., 3rd, Desai V.G., Duhart H. et al. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic Biol Med. 2001; 31: 405–411.
  86. Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005; 5: 189–200.
  87. Stupack D.G., Cheresh D.A. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci. 2002; 115: 3729–3738.
  88. Syntichaki P., Tavernarakis N. Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 2002; 3: 604–609.
  89. Trendelenburg G., Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic pre-conditioning. Glia. 2005; 50: 307–320.
  90. Truettner J.S., Alonso O.F., Bramlett H.M. et al. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab. 2011; 31: 1897–1907.
  91. Truettner J.S., Alonso O.F., Dalton Dietrich W. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab. 2005; 25: 1505–1516.
  92. Truettner J.S., Suzuki T., Dietrich W.D. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol . 2005; 138:124–134.
  93. Unal-Cevik I., Kilinc M., Can A. et al. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004; 35: 2189–2194.
  94. Vemuganti R. The MicroRNA and stroke: no need to be coded to be counted. Transl Stroke Res. 2010; 1: 158–160.
  95. Vosler P.S., Logue E.S., Repine M.J. et al. Delayed hypothermia preferentially increases expression of brain-derived neurotrophic factor exon III in rat hippocampus after asphyxia cardiac arrest. Brain Res Mol Brain Res. 2005; 135: 21–29.
  96. Wagner S., Nagel S., Kluge B. et al. Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia. Brain research. 2003; 984: 63–75.
  97. Walker N.I., Harmon B.V., Gobe G.C., Kerr J.F. Patterns of cell death. Meth Achiev Exp Pathol. 1988; 13: 18–54.
  98. Wang Q., Tang X.N., Yenari M.A. The inflammatory response in stroke. J Neuroimmunol. 2007; 184: 53–68.
  99. Ward N.L., Lamanna J.C. The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res. 2004; 26: 870–883.
  100. Webster C.M., Kelly S., Koike M.A. et al. Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis. 2009; 33: 301–312.
  101. Willis S.N., Adams J.M. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol. 2005; 17: 617–625.
  102. Xiao F., Arnold T.C., Zhang S. et al. Cerebral cortical aquaporin-4 expression in brain edema following cardiac arrest in rats. Acad Emerg Med. 2004; 11: 1001–1007.
  103. Xie Y.C., Li C.Y., Li T. et al. Effect of mild hypothermia on angiogenesis in rats with focal cerebral ischemia. Neurosci Lett. 2007; 422: 87–90.
  104. Xiong M., Cheng G.Q., Ma S.M. et al. Post-ischemic hypothermia promotes generation of neural cells and reduces apoptosis by Bcl-2 in the striatum of neonatal rat brain. Neurochem Int. 2011; 58: 625–633.
  105. Yanamoto H., Nagata I., Nakahara I. et al. Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats. Stroke. 1999; 30: 2720–2726.
  106. Yenari M.A., Han H.S. Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFkappaB). Neurochem Int. 2006; 49: 164–169.
  107. Yenari M., Wijman C., Steinberg G. Effects of hypothermia on cerebral metabolism, blood flow and autoregulation. In: Mayer S., Sessler D., eds. Hypothermia in Neurocritical Care. New York: Marcel Dekker, Inc, 2004: 141–178.
  108. Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47–59.
  109. Zhang Z., Sobel R.A., Cheng D. et al. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res. 2001; 95: 75–85.
  110. Zhao H., Shimohata T., Wang J.Q. et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci. 2005; 25: 9794–9806.

Supplementary files

Supplementary Files

Copyright (c) 2015 Popugaev K.A., Hutorenko A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies