Preconditioning as a method of neuroprotection in a model of brain infarct

Cover Page


Cite item

Abstract

Preconditioning of ischemic and hypoxic type was investigated as a method of protecting brain against acute ischemic injury. The preconditioning methods were applied to experimental rats 24 h before the time when local brain infarct was done by middle cerebral artery occlusion (MCAO). It was found that the ischemic and hypoxic preconditioning resulted in three general morphological changes: 1) the size of infarct zone was reduced by 2.2–3.8 times compared with rats that had not been treated with the preconditioning before MCAO; 2) the preconditioning treatment retained the number of living neurons in penumbra at the level of control rats, while without the preconditioning neuronal count in the penumbra after MCAO was 29% lower; 3) the number of glial cells in penumbra was increased after MCAO by 38% compared with the control level, and continued to increase under the preconditioning treatment up to 60%, that suggests an important role of neuroglia in neuroprotection. Selective blockers of ATP2dependant K+2channels (52hydroxydecanoate and glibenclamide) completely abolished the neuroprotective effects of the preconditioning.

 

About the authors

Rudolf M. Khudoerkov

Research Center of Neurology

Author for correspondence.
Email: rolfbrain@yandex.ru
Russian Federation, Moscow

N. S. Samojlenkova

M.V. Lomonosov Moscow State University

Email: rolfbrain@yandex.ru
Russian Federation, Moscow

Svetlana A. Gavrilova

Lomonosov Moscow State University

Email: rolfbrain@yandex.ru
Russian Federation, Moscow

Yu. A. Pirogov

M.V. Lomonosov Moscow State University

Email: rolfbrain@yandex.ru
Russian Federation, Moscow

V. B. Koshelev

M.V. Lomonosov Moscow State University

Email: rolfbrain@yandex.ru
Russian Federation, Moscow

References

  1. Верещагин Н.В., Моргунов В.А., Гулевская Т.С. Патология головного мозга при атеросклерозе и артериальной гипертонии. М.: Медицина, 1997.
  2. Власов Т.Д., Коржевский Д.Э., Полякова Е.А. Ишемическая адаптация головного мозга крысы как метод защиты эндотелия от ишемического/реперфузионного повреждения. Рос. физиол. журн. им..ИМ. Сеченова. 2004; 90: 40–48.
  3. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина, 2001.
  4. Данилов Р.К. Гистология. Эмбриология. Цитология. М.: Медицинское информационное агентство, 2006.
  5. Кошелев В.Б., Крушинский А.Л., Рясина Т.В. и др. Влияние кратковременной адаптации к гипоксии на развитие острых нарушений мозгового кровообращения у крыс, генетически предрасположенных к эпилепсии. Бюлл. эксп. биол. и мед. 1987; 103: 373–376.
  6. Суслина З.А., Варакин Ю.Я. Эпидемиологические аспекты изучения инсульта. Время подводить итоги. Анн. клин. эксперимент. неврол. 2007; 1: 22–28.
  7. Суслина З.А., Пирадов М.А., Танашян М.М. Принципы лечения острых ишемических нарушений мозгового кровообращения. В кн.: Суслина З.А. (ред.) Очерки ангионеврологии. М.: Атмосфера, 2005: 206–215.
  8. Back T. Pathophysiology of the ishemic penumbra – revision of a concept. Cellular and Molecular Neurobiology. 1998; 18: 621–638.
  9. Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol. 2004; 207: 3201–3212.
  10. Barone F.C., White R.F., Spera P.A. et al. Ishemic preconditioning and brain tolerance. Temporal histological and functional out- comes, protein synthesis requirement, interleukin21 receptor antagonist and early gene expression. Stroke. 1998; 29: 1937–1951.
  11. Cadet J.L., Krasnova I.N. Cellular and molecular neurobiology of brain preconditioning. Mol. Neurobiol. 2009; 39: 50–61.
  12. Chen S.T., Hsu C.Y., Hogan E.L. et al. A model of focal ishemic stroke in the rat: reproducible extensive cortical infarction. Stroke.1986; 17: 738–743.
  13. Davis S.M., Donnan G.A. Using mismatch on MRI to select thrombolytic responders an attractive yepothesis awaiting confirmation. Stroke. 2005; 36: 1100–1101.
  14. Dirnagl U., Becker K., Meisel A. Preconditioning and tolerance against cerebral ishemia: from experimental strategies to clinical use. Lancet Neurol. 2009; 8: 398 –412.
  15. Hinkle J.L., McKenna Guanci M. Acute ischemic stroke review. Journal of neuroscience nursing. 2007; 39 (5): 285–310.
  16. Hossmann K.A. Pathophysiology and therapy of experimental stroke. Cellular and Molec. Neurobiol. 2006; 26: 1057–1083.
  17. Ito U., Kuroiwa T., Nagasao J. et al. Temporal profiles of axon terminals, synapses and spines in the ishemic penumbra of the cerebral cortex: ultrastructure of neuronal remodeling. Stroke. 2006; 37: 2134–2139.
  18. Mabuchi T., Kitagawa K., Ohtsuki T. et al. Contribution of microglia / macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000; 31: 1735–1743.
  19. Manuchina E.B., Downey H.F., Mallet R.T. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia . Exp. Biol. Med. 2006; 231: 343–365.
  20. Miller B.A., Perez R.S., Shah A.R. et al. Cerebral protection by hypoxic preconditioning in the murine model of focal ischemia-reperfusion. Neuroreport. 2001; 12: 1663–1669.
  21. Nedergaard M., Vorstrup S., Astrup J. Cell density in border zone around old small human brain infarcts. Stroke. 1986; 17: 1129–1137.
  22. Obrenovitch T.P. Molecular physiology of precondicioning-induced brain tolerance to ishemia. Physiol. Rev. 2008; 88: 211–247.
  23. Racay P., Tatarcova Z., Drgova A. et al. Effect of ishemic preconditioning on mitochondrial dysfunction and mitochondrial P53 translocation after transient global cerebral ishemia in rats. Neurochem. Rec. 2007; 32: 1823–1832.
  24. Raval A.P., Dave K.R., DeFazio R.A. et al. PKC phosphorylates the mitochondrial K+ ATP channel during induction of ishemic preconditioning in the rat hippocampus. Brain Res. 2007; 1184: 345–353.
  25. Stenzel Poore M.P., Stevens S.L., King J.S., et al. Preconditioning reprograms the response to ishemic injury and primes the emer gence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 2007; 38: 680–685.
  26. Verkhartsky A., Butt A. Glial neurobiology. John Wiley & Sons, 2007.
  27. Watanabe M., Katsura K., Ohsawa I. et al. Involvement of mitoK+ ATP channel in protective mechanisms of cerebral ischemic
  28. tolerance. Brain Res. 2008; 1238: 199 –207.

Copyright (c) 2009 Khudoerkov R.M., Samojlenkova N.S., Gavrilova S.A., Pirogov Y.A., Koshelev V.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies