Microelectrode recording of neuronal activity in the surgery for Parkinson’s disease

Cover Page

Cite item

Full Text


Microelectrode recording of neuronal activity is a modern and safe tool for neurophysiological mapping of subcortical brain structures that serve as targets for stereotactic functional neurosurgery. The article discusses the main technical and clinical aspects of this method and focuses on Parkinson’s disease, a classical object of functional neurosurgery. Microelectrode analysis improves the accuracy of electrode positioning and the effectiveness of surgical neuromodulation in Parkinson’s disease, enables investigation of the pathophysiological features of extrapyramidal disorders, mechanisms of action of drugs and various functional neurosurgery techniques, and also facilitates the search for new potential targets for deep brain stimulation.

About the authors

D. M. Nizametdinova

Research Center of Neurology

Author for correspondence.
Email: dinara.dinara@mail.ru
Russian Federation, Moscow

Vladimir M. Tyurnikov

Research Center of Neurology

Email: dinara.dinara@mail.ru
Russian Federation, Moscow

I. I. Fedorenko

Research Center of Neurology

Email: dinara.dinara@mail.ru
Russian Federation, Moscow

Artem O. Gushcha

Research Center of Neurology

Email: dinara.dinara@mail.ru
Russian Federation, Moscow

Sergey N. Illarioshkin

Research Center of Neurology

Email: dinara.dinara@mail.ru
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research

Russian Federation, Moscow


  1. Иллариошкин С.Н. Терапия паркинсонизма: возможности и перспективы. Неврология и ревматология. Приложение к журналу Consilium Medicum. 2009; 1: 35–40.
  2. Седов А.С., Медведник А.Р., Раева С.Н. Значение локальной синхронизации и осцилляторной активности нейронов таламуса в целенаправленной деятельности человека. Физиология человека. 2014; 1: 5–12.
  3. Abosch A., Hutchison W.D., Saint-Cyr J.A. et al. Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J. Neurosurg. 2002; 97: 1167–1172.
  4. Bain P., Aziz T., Liu X. et al. Deep Brain Stimulation. Oxford, UK: Oxford University Press, 2009.
  5. Ben Haim S., Asaad W.F., Gale J.T., Eskandar E.N. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery.2009; 64: 754–762.
  6. Benabid A.L., Koudsie A., Benazzouz A. et al. Deep brain stimulation for Parkinson’s disease. Adv. Neurol. 2001; 86: 405–412.
  7. Bergman H., Wichmann T., Karmon B., De Long M.R. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism J. Neurophysiol. 1994; 72: 507–520.
  8. Binder D.K., Rau G.M., Starr P.A. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005; 56: 722–732.
  9. Castrioto A., Moro E. New targets for deep brain stimulation treatment of Parkinson’s disease. Expert Rev. Neurother. 2013; 13: 1319–1328.
  10. Deletis V., Shils J.L. (ed.) Neurophysiology in neurosurgery. A modern intraoperative approach. San Diego: Academic press, 2002.
  11. Feng H., Zhuang P., Hallett M. et al. Characteristics of subthalamic oscillatory activity in parkinsonian akinetic-rigid type and mixed type. Int. J. Neurosci. 2015; 20: 1–10.
  12. Gross R.E., Krack P., Rodriguez-Oroz M.C. et al. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov. Disord. 2006; 21: 259–283.
  13. Guo S., Zhuang P., Zheng Z. et al. Neuronal firing patterns in the subthalamic nucleus in patients with akinetic-rigid-type Parkinson’s disease. J. Clin. Neurosci. 2012; 19: 1404–1407.
  14. Guridi J., Rodriguez-Oroz M.C., Lozano A.M. et al. Targeting the basal ganglia for deep brain stimulation in Parkinson disease. Neurology. 2000; 55: 21–28.
  15. Hutchison W.D., Lang A.E., Dostrovsky J.O., Lozano A.M. Pallidal neuronal activity: implications for models of dystonia. Ann. Neurol. 2003; 53: 480–488.
  16. Israel Z., Burchiel K. Microelectrode recording in movement disorder surgery. New York: Thieme, 2004.
  17. Lozano A.M., Lang A.E., Levy R. et al. Neuronal recordings in Parkinson’s disease patients with dyskinesias induced by apomorphine. Ann. Neurol. 2000; 47: 141–146.
  18. Lozano A.M., Snyder B.J., Hamani C. et al. Basal ganglia physiology and deep brain stimulation. Mov. Disord. 2010; 25: 71–75.
  19. Stefani A., Lozano A.M., Peppe A. et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007; 130: 1596–1607.
  20. Vesper J., Haak S., Ostertag S. et al. Subthalamic nucleus deep brain stimulation in elderly patients – analysis of outcome and complications. BMC Neurol. 2007; 7: 7–16.
  21. Weinberger M., Hamani C., Hutchison W.D. Hutchison W.D et al. Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp. Brain Res. 2008; 188: 165–174.

Supplementary files

Supplementary Files

Copyright (c) 2016 Nizametdinova D.M., Tyurnikov V.M., Fedorenko I.I., Gushcha A.O., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies