LYVE-1 expression in the endothelium of newly formed vessels of carotid atherosclerotic plaque

Cover Page

Cite item

Full Text


Introduction. The discovery of specific markers of lymphatic endothelium, including LYVE-1, has led to a much better understanding of the structure and function of the lymphatic system. It has been shown that lymphatic system regulates immune responses, reverse cholesterol transport, and inflammation in atherosclerosis. LYVE-1 plays an important role in activating the function of the lymphatic system and is also one of the first markers of lymphangiogenesis. There are few morphological studies of lymphatic vessels in atherosclerotic plaques, and the obtained data are contradictory.

The aim of the study was to characterize the LYVE-1 receptor expression in the endothelium of newly formed vessels in carotid atherosclerotic plaques and to evaluate its relationship with the plaque structure.

Materials and methods. 34 carotid atherosclerotic plaques obtained during carotid endarterectomies were investigated using histological and immunohistochemical techniques. The density of LYVE-1+ vessels per 1 cm2 of plaque, combined expression of LYVE-1 and CD34, proportion of atheromatosis and calcifications, as well as severity of dust-like calcification, haemorrhage, overall macrophage response (CD68+), and plaque infiltration by M2 macrophage (CD206+) were evaluated.

Results. LYVE-1+ vessels were detected in 32 carotid atherosclerotic plaques, with a range of 5.7–1698 per 1 cm2 of the plaque (37.4 [15.3; 76]). Marker expression was heterogeneous: it was observed in all or only some endothelial cells of the newly formed vessel, and the expression intensity varied from weak to strong. Both CD34+LYVE-1+ and CD34+LYVE-1– vessel phenotypes were identified. A relationship between endothelial LYVE-1 expression and the structure or type of plaque was not established, except for the macrophage response. The density of LYVE-1+ vessels in atherosclerotic plaques correlated weakly with the overall macrophage response (r = 0.37; p = 0.03), more significantly with the number of anti-inflammatory M2 macrophages (r = 0.47; p = 0.005), especially for vessels with moderate and strong marker expression (r = 0.56; p = 0.0006).

Conclusion. The combined expression of LYVE-1 and CD34 in the endothelium of plaque neovessels was demonstrated for the first time, and a possible association between endothelial LYVE-1 expression in newly formed vessels and the reparative processes in atherosclerotic plaques was shown.

About the authors

Anna N. Evdokimenko

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow

Ksenia N. Kulichenkova

Research Center of Neurology

Russian Federation, Moscow

Tatiana S. Gulevskaya

Research Center of Neurology

Russian Federation, Moscow


  1. Lemole G.M.Sr. The role of lymphstasis in atherogenesis revisited. Ann Thorac Surg 2016; 101: 2029. doi: 10.1016/j.athoracsur.2015.09.093. PMID: 27106458.
  2. Zheng Z., Ren K., Peng X. et al. Lymphatic vessels: a potential approach to the treatment of atherosclerosis? Lymphat Res Biol 2018; 16: 498–506. doi: 10.1089/lrb.2018.0015. PMID: 30272526.
  3. Kutkut I., Meens M.J., Mckee T.A. et al. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. Eur J Clin Invest 2015; 45: 100–108. doi: 10.1111/eci.12372. PMID: 25388153.
  4. Csányi G., Singla B. Arterial lymphatics in atherosclerosis: old questions, new insights, and remaining challenges. J Clin Med 2019; 8: 495. DOI: 10.3390/ jcm8040495. PMID: 30979062.
  5. Drozdz K., Janczak D., Dziegiel P. et al. Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. Folia Histochem Cytobiol 2008; 46: 433–436. doi: 10.2478/v10042-008-0083-7. PMID: 19141394.
  6. Drozdz K., Janczak D., Dziegiel P. et al. Adventitial lymphatics and atherosclerosis. Lymphology 2012; 45: 26–33. PMID: 22768470.
  7. Kholová I., Dragneva G., Čermáková P. et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest 2011; 41: 487–497. doi: 10.1111/j.1365-2362.2010.02431.x. PMID: 21128936.
  8. Eliska O., Eliskova M., Miller A.J. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology 2006; 39: 76–83. PMID: 16910098.
  9. Banerji S., Ni J., Wang S.X. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144: 789–801. doi: 10.1083/jcb.144.4.789. PMID: 10037799.
  10. Jackson D.G. Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2019; 78–79: 219–235. doi: 10.1016/j.matbio.2018.02.001. PMID: 29425695.
  11. Wróbel T., Dziegiel P., Mazur G. et al. LYVE-1 expression on high endothelial venules (HEVs) of lymph nodes. Lymphology 2005; 38: 107–110. PMID: 16353487.
  12. Schledzewski K., Falkowski M., Moldenhauer G. et al. Lympathic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macropahages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: Implications for the assessment of lymphangiogen. J Pathol 2006; 209: 67–77. doi: 10.1002/path.1942. PMID: 16482496.
  13. Krolikoski M., Monslow J., Puré E. The CD44-HA axis and inflammation in atherosclerosis: a temporal perspective. Matrix Biol 2019; 78–79: 201–218. doi: 10.1016/j.matbio.2018.05.007. PMID: 29792915.
  14. Escobedo N., Oliver G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol 2016; 32: 677–691. DOI: 10.1146/ annurev-cellbio-111315-124944. PMID: 27298093.
  15. Stary H.C. Natural history and histological classification of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1177–1178. doi: 10.1161/01. ATV.20.5.1177. PMID: 10807728.
  16. Baumhueter S., Dybdal N., Kyle C., Lasky L.A. Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 1994;
  17. Shi Q., VandeBerg J.L. Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. Am J Stem Cells 2015; 4: 32–37. PMID: 25973329.
  18. Sidney L.E., Branch M.J., Dunphy S.E. et al. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014; 32: 1380–1389. doi: 10.1002/stem.1661. PMID: 24497003.
  19. Fiedler U., Christian S., Koidl S. et al. The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol 2006; 168: 1045–1053. doi: 10.2353/ajpath.2006.050554. PMID: 16507917.
  20. Hong Y.-K., Harvey N., Noh Y.-H. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225: 351–357. doi: 10.1002/dvdy.10163. PMID: 12412020.
  21. Sauter B., Foedinger D., Sterniczky B. et al. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 1998; 46: 165–176. doi: 10.1177/002215549804600205. PMID: 9446823.
  22. Meng F.-W., Liu F.-S., Liu W.-H. et al. Formation of new lymphatic vessels in glioma: an immunohistochemical analysis. Neuropathology 2020; 40: 215–223. doi: 10.1111/neup.12625. PMID: 31960509.
  23. Zhang H.-F., Wang Y.-L., Tan Y.-Z. et al. Enhancement of cardiac lymph- angiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGF-C. Basic Res Cardiol 2019; 114: 43. doi: 10.1007/s00395-019-0752-z. PMID: 31587086.
  24. Meng F.-W., Gao Z.-L., Li L. et al. Reconstruction of lymphatic vessels in the mouse tail after cupping therapy. Folia Morphol (Warsz) 2020; 79: 98–104. doi: 10.5603/FM.a2019.0044. PMID: 30993665.
  25. Salven P., Mustjoki S., Alitalo R. et al. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101: 168–172. doi: 10.1182/blood-2002-03-0755. PMID: 12393704.
  26. Schmeisser A., Garlichs C.D., Zhang H. et al. Monocytes coexpress endo- thelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001; 49: 671–680. doi: 10.1016/S0008-6363(00)00270-4. PMID: 11166280.
  27. Cursiefen C., Chen L., Borges L.P. et al. VEGF-A stimulates lymphangio- genesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113: 1040–1050. doi: 10.1172/JCI20465. PMID: 15057311.
  28. Attout T., Hoerauf A., Dénécé G. et al. Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human Onchocerca nodule. PLoS One 2009; 4: e8234. doi: 10.1371/journal.pone.0008234. PMID: 20011036.
  29. Dunmore B.J., McCarthy M.J., Naylor A.R., Brindle N.P.J. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 2007; 45: 155–159. doi: 10.1016/j.jvs.2006.08.072. PMID: 17210401.
  30. Sluimer J.C., Kolodgie F.D., Bijnens A.P.J.J. et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. Relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 2009; 53: 1517–1527. DOI: 10.1016/j. jacc.2008.12.056. PMID: 19389562.
  31. Torzicky M., Viznerova P., Richter S. et al. Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells. J Invest Dermatol 2012; 132: 1149–1157. doi: 10.1038/jid.2011.420. PMID: 22189791.
  32. Kiesewetter A., Cursiefen C., Eming S.A., Hos D. Phase-specific functions of macrophages determine injury-mediated corneal hem- and lymphangiogenesis. Sci Rep 2019; 9: 308. doi: 10.1038/s41598-018-36526-6. PMID: 30670724.
  33. Sarbaeva N.N., Ponomareva Yu.V., Milyakova M.N. [Macrophages: diversity of phenotypes and functions, interaction with foreign materials]. Geny i kletki 2016; 11(1): 9–17. (In Russ.)
  34. de Gaetano M., Crean D., Barry M., Belton O. M1- and M2-Type macro- phage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 2016; 7: 275. doi: 10.3389/fimmu.2016.00275. PMID: 27486460.
  35. Bieniasz-Krzywiec P., Martín-Pérez R., Ehling M. et al. Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer. Cell Metab 2019; 30: 917–936.e10. doi: 10.1016/j.cmet.2019.07.015. PMID: 31447322.

Supplementary files

Supplementary Files

Copyright (c) 2020 Evdokimenko A.N., Kulichenkova K.N., Gulevskaya T.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies